A classification of nonabelian simple 3-BCI-groups
نویسندگان
چکیده
For a finite group G and a subset S ⊆ G (possibly, S contains the identity of G), the bi-Cayley graph BCay(G, S) of G with respect to S is the graph with vertex set G × {0, 1} and with edge set {(x, 0), (sx, 1)|x ∈ G, s ∈ S}. A bi-Cayley graph BCay(G, S) is called a BCI-graph if, for any bi-Cayley graph BCay(G, T ), whenever BCay(G, S) ∼= BCay(G, T ) we have T = gS , for some g ∈ G, α ∈ Aut(G). A group G is called an m-BCI-group, if all bi-Cayley graphs of G of valency at most m are BCI-graphs. In this paper, we prove that a finite nonabelian simple group is a 3-BCI-group if and only if it is A5. © 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Simple groups with the same prime graph as $D_n(q)$
Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...
متن کاملON COMPOSITION FACTORS OF A GROUP WITH THE SAME PRIME GRAPH AS Ln(5)
The prime graph of a finite group $G$ is denoted by$ga(G)$. A nonabelian simple group $G$ is called quasirecognizable by primegraph, if for every finite group $H$, where $ga(H)=ga(G)$, thereexists a nonabelian composition factor of $H$ which is isomorphic to$G$. Until now, it is proved that some finite linear simple groups arequasirecognizable by prime graph, for instance, the linear groups $L_...
متن کاملCharacterization of finite $p$-groups by the order of their Schur multipliers ($t(G)=7$)
Let $G$ be a finite $p$-group of order $p^n$ and $|{mathcal M}(G)|=p^{frac{1}{2}n(n-1)-t(G)}$, where ${mathcal M}(G)$ is the Schur multiplier of $G$ and $t(G)$ is a nonnegative integer. The classification of such groups $G$ is already known for $t(G)leq 6$. This paper extends the classification to $t(G)=7$.
متن کاملA Refined Waring Problem for Finite Simple Groups
Let w1 and w2 be nontrivial words in free groups Fn1 and Fn2 , respectively. We prove that, for all sufficiently large finite nonabelian simple groups G, there exist subsets C1 ⊆ w1(G) and C2 ⊆ w2(G) such that |Ci | = O(|G|1/2 log |G|) and C1C2 = G. In particular, ifw is any nontrivial word and G is a sufficiently large finite nonabelian simple group, then w(G) contains a thin base of order 2. ...
متن کاملOn finite simple and nonsolvable groups acting on homology 4-spheres
The only finite nonabelian simple group acting on a homology 3-sphere necessarily non-freely is the dodecahedral group A5 ∼= PSL(2, 5) (in analogy, the only finite perfect group acting freely on a homology 3-sphere is the binary dodecahedral group A∗5 ∼= SL(2, 5)). In the present paper we show that the only finite simple groups acting on a homology 4-sphere, and in particular on the 4-sphere, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 31 شماره
صفحات -
تاریخ انتشار 2010